数理教育研究会

神戸女学院

神戸女学院中等部 算数 2020(R2)入試分析

今回は神戸女学院中等部をとりあげます。

【入試資料分析】
受験者240名に対して合格者が153名。実質倍率は1.57倍です。
合格最低点は体育実技(20点)を含めて、249点/460点。筆記で6割が目標です。

【問題分析】
大問1…(1)よくある公約数の問題なので瞬殺してください。(2)よくある一次不定方程式の問題なので瞬殺してください。

大問2…消費税の問題です。(1)3583×(0.1-0.08)=71.666…としてから切り捨てすると、答えがずれるのが注意してください。(2)何円から何円の間であればいいのか範囲を考えましょう。

大問3…ダイアグラムなど書いて整理など処理能力が求められていますが、意外と場合分けがほとんど起こらずややこしくはなりません。速さを求めるより2kmで何分かかるかで計算した方がやりやすいです。

大問4…狂った時計のよくある問題です。時計Aが午前8時38分を指してから、時計Cが午前8時38分を指すまでの間に時計Bでは1分15秒経過していましたという表現が少し難しいですが、これを先に書いてあるから混乱するのであって、この後ろに書いてあることでAとCの速さの比が出るのでそこから処理出来たらやりやすかったと思います。
考えだす前に問題文を一通り読むようにしましょう。

大問5…群数列の問題です。今回はこれを扱います。

大問6…正六角形の問題です。使う手法はいかにも正六角形の問題で使うことの組み合わせなので一通り定石は勉強しておくようにしておきましょう。

(問題)R2 神戸女学院中等部 算数 大問5
次のような規則にしたがい、整数が組に区切られて2列に並んでします。

A列: 1| 2 3| 7 8 9|13 14 15 16|…
B列: 2| 5 6|10 11 12|17 18 19 20|…

整数の位置を○列第△組☐番目と表すことにします。例えば,8はA列第3組2番目の数となります。
(1) 280は何列第何組何番目の数ですか。

(2)A列の先頭から第a組b番目までの和と、B列の先頭から第a組b番目までの和との差が85となりました。aとbを求めなさい。

(3)B列の先頭から第15組14番目までの和を求めなさい。


[解説]
(1)
1 2|3 4 5 6|7 8 9 10 11 12|13 14 15 16 17 18 19 20|…
という群数列を考えて280は何群目に入るかと考えると
2×(1+2+3+…+16)=272<280
2×(1+2+3+…+16+17)=306>280
で17群目に入り
280-272=8でこれは17より小さいのでA列の方に入ります。
A列第17組8番目

(2)第1群目の差は1
第2群目の差は2+2=4
第3群目の差は3+3+3=9
第4群目の差は4+4+4+4=16
と平方数になります。

1+4+9+16+25=55<85
1+4+9+16+25+36=91>85
で85は第6群目に入ることがわかります。
(85-55)÷6=5
よって第6組5番目よりa=6,b=5とわかります。

(3)AとBの差がわかっているので、まずはAとBをあわせて第15群まで全部足すことを考えてみます。
第15群の最後の項は
2×(1+2+3+…+15)=240
よってAとBをあわせて第15群まで全部足すと
1+2+3+…+240=28920

この時AよりBの方がどれだけ大きいのかを計算すると
1+4+9+16+…+15×15=1240

よって第15群までのAとBの和は28920,差は1240なので和差算よりBの和は
(28920+1240)÷2=15080
Bの第15群の14番目までなので最後の240を取り除いて
15080-240=14840
とわかりました。

群数列の問題として典型的な手法も使いますが、少し崩してきていて工夫が必要です。たとえ良い方法が思いつかなくても、力技で解く力が欲しいところです。
日々の練習が合格につながります(畠田)

神戸女学院中等部 算数 2018(H30)入試分析

今回は神戸女学院中等部をとりあげます。

受験者248名に対して合格者が159名。実質倍率は1.56倍です。
合格最低点は体育実技(20点)を含めて、268点/460点。筆記で6割が目標です!

それでは神戸女学院が好きそうな処理が大変な問題です。

(問題)H30 神戸女学院中等部 算数 大問6
図のように、1辺1cmの正六角形ABDEFと1辺3cmの正三角形XYZがあり、はじめ点Pは点Aに、点Qは点Xにあります。
いま、大小2つのサイコロを同時にふります。
点Pは(小さいサイコロの目の数)×1cmだけ正六角形の周上を右回りに移動し、点Qは(大きいサイコロの目の数)×2cmだけ、正三角形XYZの周上を右回りに移動します。
例えば、1回目の小さいサイコロの目の数が4、大きいサイコロの目の数が2であったとすると、点Pは点Eに、点Qは点Dに移動します。また2回目の小さいサイコロの目の数が3、大きいサイコロの目の数が3であったとすると、2点P、Qは点Bで重なります。
koubejyogakuin18m1.jpg
(1)2つのサイコロを同時に1回ふったとき、2点P、Qが重なるようなサイコロの目の出方は何通りありますか。
(2)2つのサイコロを同時にふる操作を2回続けて行ったのち、2点P、Qが点Dで重なっているようなサイコロの目の出方は何通りありますか。
(3)2つのサイコロを同時にふる操作を3回続けて行ったのち、2点P、Qが点Aで重なるのが初めてとなるようなサイコロの目の出方は何通りありますか。
(1回目、2回目に点A以外で重なっていても構いません)

(1),(2)は簡単に書きます。

(1)小さいサイコロの目と点Pの関係は
(1,B),(2,C),(3,D),(4,E),(5,F),(6,A)
大きいサイコロの目と点Qの関係は
(1,C),(2,D),(3,Z),(4,A),(5,B),(6,Y)
なのでA,B,C,Dで重なるの場合が1通りずつの4通りとなります。

(2)2回続けて振って、点PがDに止まるのは(1回目の目)+(2回目の目)=3,9より、小さいサイコロの1回目と2回目の目の組み合わせは
(1,2),(2,1),(3,6),(4,5),(5,4),(6,3)の6通り

2回続けて振って、点QがDに止まるのは(1回目の目)+(2回目の目)=2,11より、大きいサイコロの1回目と2回目の目の組み合わせは
(1,1),(5,6),(6,5)の3通り
で6×3=18通りとなります。

(3)途中も含めてAに止まるには点Pは目の和が
(1回目)=6
(1回目)+(2回目)=6,12
(1回目)+(2回目)+(3回目)=6,12,18
点Qは目の和が
(1回目)=4
(1回目)+(2回目)=4,13
(1回目)+(2回目)+(3回目)=4,13
です。
点Qに注目すると(1回目)+(2回目)=4,13の時に(3回目)を加えて(1回目)+(2回目)+(3回目)=4,13にすることはできないので3回目以外でAで同時に重なるのは1回目しかないことがわかります。

と言うことは1つの解法として、小さいサイコロの目が
(1回目)+(2回目)+(3回目)=6,12,18
で大きいサイコロの目が
(1回目)+(2回目)+(3回目)=4,13
となる場合のうちから
小さいサイコロの(1回目)=6、大きいサイコロの(1回目)=4のパターンを除く方法が考えられます。

1回目の目で場合わけすると
小さいサイコロの目
(1回目)=1のとき
(2回目)+(3回目)=5は4通り、(2回目)+(3回目)=11は2通り
(1回目)=2のとき
(2回目)+(3回目)=4は3通り、(2回目)+(3回目)=10は3通り
(1回目)=3のとき
(2回目)+(3回目)=3は2通り、(2回目)+(3回目)=9は4通り
(1回目)=4のとき
(2回目)+(3回目)=2は1通り、(2回目)+(3回目)=8は5通り
(1回目)=5のとき
(2回目)+(3回目)=7は6通り
(1回目)=6のとき
(2回目)+(3回目)=6は5通り、(2回目)+(3回目)=12は1通り
全部で(4+3+2+1)+(2+3+4+5+6+5)+1=36通り
1回目にAである(1回目)=6は5+1=6通り

大きいサイコロの目
(1回目)=1のとき
(2回目)+(3回目)=3は2通り、(2回目)+(3回目)=12は1通り
(1回目)=2のとき
(2回目)+(3回目)=2は1通り、(2回目)+(3回目)=11は2通り
(1回目)=3のとき
(2回目)+(3回目)=10は3通り
(1回目)=4のとき
(2回目)+(3回目)=9は4通り
(1回目)=5のとき
(2回目)+(3回目)=8は5通り
(1回目)=6のとき
(2回目)+(3回目)=7は6通り
よって全部で(2+1)+(1+2+3+4+5+6)=24通り
1回目にAである(1回目)=4は4通り

なので36×24-6×4=840通り

思いつきで数えるのではなくて、漏れなく重複がないように処理の仕方を学んで身に付けることで解けるようになります。
色々な場合の数を勉強しておきましょう!(畠田)

PAGE TOP