数理教育研究会

浦和明の星

浦和明の星女子中学校 理科 問題解説&入試分析★2020年(R2年)

今回は浦和明の星中学第1回の理科を扱います。

【問題分析】
大問1…物理の問題です。・斜面は加速して速度が速くなる・水平面では速さが一定がポイントです。水平面より斜面が先にある方が、加速されてから水平面を通るので早くなります。ただし,斜面では加速されると言っても長ければ長いほど時間はかかります。
問題文に与えられたデータで考えたら解ける問題ですが、ある程度知っていないと厳しいと思います。

大問2…典型的な水溶液に溶ける金属の計算問題です。しっかり勉強していれば問題ありませんが、苦手としている人も多いかもしれません。しかし勉強した努力は裏切らない問題なのでぜひ勉強しておいてください。

大問3…光合成の問題です。よく聞かれる問題とは言え、しっかりとした考察を聞かれており、そんなに簡単でもありません。しかし正解したい。ただし問4(b)(c)については複雑なグラフや長い文章をだらだら書いていますが、北半球と南半球は季節が逆と言うことなだけで問題文を読まなくて答えがすぐに埋まります。長くて複雑に見えても諦めずに最後まできっちり問題を見ておきたいです。

大問4…日食の問題ですが、これも難易度が高めの考察です。問2は普通は月の公転を考えるので戸惑ったかもしれません。問4では月の公転面と地球の公転面が平行でないので新月の時に一直線になるとは限らないから日食は毎回起こるわけではありませんでした。しかし公転面が平行になったとすると毎回新月で日食が起こると考えられます。だから毎月起こると考えられます。しかし月の満ち欠けは29.5日というように地球と月と太陽が一直線になる時間は約0.5日ずれていくので見ることが日食や部分日食を見ることができる地域はかわっていきます。
今回は問5を扱います。


(問題)R2 浦和明の星中学 大問4の問5
太陽のようにみずから光る星にも明るさが変化するものがあり、このような星を変光星といいます。変光星にはいくつか種類があり、地球から見たとき日食と同じしくみによって明るさが変化する星を、食変光星といいます。
いま、星Aのまわりを、星Aよりも暗く大きな星Bが矢印の方向へまわっている食変光星について考えます(図7)。観測者から見て、星Aと星Bが図7のように並んでおり、そこから星Bが星Aの周りを一周まわるまでの時間と経過と、食変光星の明るさの変化を表しているものはどれですか。もっとも適当なものを選び、ア~カで答えなさい。ただし、星Aと星Bのそれぞれの大きさや、おたがいのよりは正確ではありません。

urawaak20r1.jpg
urawaaker20r2.jpg

[解説]
観測者と星Aの間に星Bが入ると暗くなるだけやろと思いますが、そんな選択肢はありません。

実はこれは星Bが暗く描かれているので光ってないように思ってしまいますが、星Aに比べて相対的に暗いだけであって恒星でしっかり光っています。
だから両方見えてる時の方が明るくて、重なると暗くなります。

まず星Bが星Aの後ろに回って星Bが隠れますが、その後星Bが手前まで回ってきて星Aが隠れます。

しかし星Bが隠れるときよりも星Aが隠れた時の方が暗くなるのでとわかります。

見たことない問題なのでかなり難しいとは思います。しかし、よく勉強しておかないとどの問題はとることが出来て、どの問題は落としていいのかわからなくなります。しっかり勉強してば判断できるようになり合格に近づきます!(畠田)

浦和明の星女子中学校 算数 問題解説&入試分析★2020年(R2年)

今回は浦和明の星中学第1回を扱います。

【入試資料分析】
受験者数2053人
合格者数1061人
実質倍率1.9

平均点は
受験者全体 合格者全体の順に
国語74.7 79
算数56.6 68
理科30.9 35
社会37.6 40.2
合計199.7 222.3

算数はここ数年では少し低めでした。
受験者全体と合格者全体の平均点の差をみると、算数はかなり差がつきやすい科目となっています。

【問題分析】
大問1…(1)計算問題です、必ずあわせましょう。(2)仕事算の基本的な問題です。(3)2つの斜線部の面積が等しいということは,直角三角形とおうぎ形の面積も等しいという、よくあるパターンなのでしっかり正解したい。(4)丁寧に数えて規則性を見つける問題です、正解したい。(5)年齢算、少し応用的ですが正解したい。(6)状況を把握するのが少し難しかったかもしれません。上からと下からと横からを全部あわせて、左右上下を考えましょう。(7)表の読解力が必要ですが、正解したい。(8)少し複雑な食塩水の濃度の問題ですが、あわせておきたいところです。

大問2…(1)旅人算。時間を計算するとそんなに複雑でもないので正解したいところです。(2)そんなに複雑というわけでもないですが、ミスをしないようにきっちり見直しを。

大問3…比の問題です。箱アと箱イはみかんの合計数同じなので比の和が同じようになるようにします。よく練習しておいて確実にあわせたい。

大問4…(1)(2)くらいまでは正解できたらよいと思います。よく見るような問題かもしれませんが、ミスなく数えるのは難しいかもしれません。

大問5…今回はこれを扱います。

(問題)R2 浦和明の星中学 大問5
下の図のように、青い電球と赤い電球をそれぞれ19個ずつ並べ,左から順に0番から18番まで番号をつけました。
青い電球は7秒間隔で,赤い電球は13秒間隔で,次のように一つずつ一瞬だけ発光します。どちらの色の電球も,0,1,2,…,16,17,18,17,16,…2,1,0,1,2,…というように,0番から18番までは番号の小さい順に,18番から0番までは番号の大きい順に発光していくことを繰り返します。
はじめに,0番の青と赤の電球が同時に発光し,その後次々と発光していきました。次の問いに答えなさい。
urawaake20m1.jpg

(1)青と赤の電球が,0番で同時に発光した後,次に同時に発光するのは何番の電球ですか。青と赤の電球の番号をそれぞれ答えなさい。

(2)青と赤の電球が,0番で同時に発光した後,次に同じ番号のところで同時に発光する電球の番号を答えなさい。

(3)同じ番号のところで同時に発光する青と赤の電球が,0番と(2)の答え以外にもあります。その電球の番号を,0番と(2)の答えを除いてすべて答えなさい。

[解説]
(1)7と13は互いの素です。
なので7×13=91秒後に同時に光ることになります。
ということは
青い電球は91÷7=13番目
赤い電球は91÷13=7番目
とわかります。

(2)まず(1)がヒントになってることを疑うのが一番最初にやることがです。
91秒の倍数であるはずで青い電球は13個ずつ進み,赤い電球は7個ずつ進みます。

しかも0と18は1回ついて折り返しで往復しているとなると速さの問題に似ています。

速さの問題では出会いと追いつきを考えました。

urawaakenohosi_2020_kaisetu_m5-1.jpg
urawaakenohosi_2020_kaisetu_m5-2.jpg
出会いでは二つの電球が進んだ個数の和が18×2=36個の整数倍
追い抜きでは二つの電球が進んだ個数の差が18×2=36個の整数倍

となります。

○出会いの時
(13+7)×A=36×B
これを整理して
5×A=9×B
より一番小さいAは9とわかります。

この時,赤い電球は7×9=63進むので

63=36×2+18+9
より番号9とわかります。

○追いつきの時
(13-7)×A=36×B
これを整理して
A=6×B
より一番小さいAは6とわかります。

この時,赤い電球は7×6=42進むので

42=36+6

より番号6です。

ということは番号9より番号6の方が小さいので番号6とわかります。

(3)(2)より
○出会いの時
出会いの電球の番号は9ずつ増えるので
0,9,18,9,0,…

○追いつきの時
追いつきの電球の番号は6ずつ増えるので
0,6,12,18,12,6,0,…

以上より番号は9,12,18とわかりました。

前の問がヒントになってないか?考える,色々と試してみて問題を掴んでみる,似たような問題の解法が使えないか?考える。これらのアプローチを練習していけば合格に近づきます!(畠田)

PAGE TOP