数理教育研究会

桜蔭

桜蔭中学校理科 問題解説&入試分析★2020年(R2年)

今回は桜蔭中学校の理科を取り上げます。

【問題分析】
大問1…環境の問題です、知識は問6の京都議定書やパリ協定ぐらいですが、基本的には読解です。リード文に書いてることをしっかり読み取って答える練習しましょう。

大問2…金属の密度の問題です。都市鉱山など一部、知識が難しいですが意味も計算もわかりやすくしっかり点数を固めたいです。

大問3…植物の問題です。問1のクヌギ・コナラが落葉樹、スギ・ヒノキが常緑樹などしっかり覚えましょう。問2の外来種はヨモギ、ツクシ、カラスノエンドウは外来種ではないと予想できるので消去法とか推測して選べるようにしておくことも大切です。問3は読解なので、これしか入らないであろうとか考えて答えを入れていきましょう。

大問4…モーメントの問題です。今回はこれを扱いたいと思います。

大問5…リード文に水が入った氷の方が早く溶けているということをヒントに考えると解くことができます。熱の伝導の問題です。
水に氷が浮かんでいたとすると、その氷が溶けても水面の高さはかわらないことをチェックしておいてください。北極の氷が溶けても水位はかわらないことが有名な話です。余裕あれば何故そうなるのかアルキメデスの原理を元に考えてみてください。

(問題)R2 桜蔭中学校・理科 大問4
長さ60cm,重さ15gの棒の端から30cmの位置にひもを結んでつり下げると、棒は水平になりました(図1)。この棒と,重さ45gの皿,重さ100gのおもり,分銅を使い,つぎの①~④の手順で「さおばかり」を作りました。あとの問いに答えなさい。ただし,ひもの重さは考えなくてよいものとします。
ouin20r1.jpg
【手順】
① 棒の左端に更を下げ,左端から15cmの位置にひもを結んで棒をつるす。
② 何も皿にのせず,棒が水平になる位置におもりを下げる。おもりの位置に「0g」の印を付ける(図2)。棒をつるすひもからおもりまでの長さをaとする。
③ 皿に10gの分銅をのせ,棒が水平になる位置におもりを下げる。おもりの位置に「10g」の印をつける。
④ 皿にのせる分銅を10g増やすごとに,おもりの位置に印をつける作業を繰り返し,棒の右端まで印を付ける。
ouin20r2.jpg
問1 aは何cmですか。

問2 10gごとの印の間隔は何cmですか。

問3 図3のように,重さ180gのものを皿にのせて棒を水平にしました。棒をつるすひもからおもりまでの長さbは何cmですか。
ouin20r3.jpg

問4 棒の右端までおもりを下げられるとすると,量れる重さは最大で何gですか。

問5 重さ150gのおもりを使い,同じ手順でさおばかりを作った場合,量れる重さは最大で何gですか。

問6 おもりの重さを変えると,さおばかりはどう変わるかを説明したつぎの文ア~カから,正しいものを2つ選び,記号で答えなさい。
ア. おもりの重さを変えると,0gの印の位置も,10gごとの印の間隔も変わる。
イ. おもりの重さを変えると,0gの印の位置は変わらず,10gごとの印の間隔は変わる。
ウ. おもりの重さを変えると,0gの印の位置は変わり,10gごとの印の間隔は変わらない。
エ. おもりの重さが100g増えると,量れる重さの最大値も100g増える。
カ. おもりの重さが100g増えると,量れる重さの最大値は300g増える。

[解説]
棒のひもがついてる位置の周りのモーメントを考えて

(皿と分銅の重さ)×(皿とひもの位置との距離)=(おもりの重さ)×a+(棒の重さ)×(30cm-15cm)

の式をたてていきます

問1は簡単に答えます。
45×15=100×a+15×15
これよりa=4.5cm

問2
このような10gごとの印の間隔を求める問題は式が左辺や右辺がどう変化したかを考えます。
(45+10)×15=100×a+15×15
左辺は前の問題と比べて10×15=150増えています。
ということはaは150÷100=1.5cm増えると良いことになります。

問3
180÷10=18より1.5cm×18移動させればよいので
b=4.5+1.5×18=31.5cm

問4
0gの状態から60-15-4.5=40.5cm移動した時なので
40.5÷1.5=27
で1.5cmずつ27回移動させたときなので27×10=270g

問5
重さ150gのおもりを一番右につるせばよいので
(45+☐)×15=150×(60-15)+15×15
☐=420gとわかりました

問6
まずア、イ、ウについては
100gのおもりで0gの時はおもり100gによるモーメントは100×4.5=450であってので
おもりが150gの時は450÷150=3cmとなるのでずれる。
分銅を10g増やすと,左辺は10×15=150増えたので,aは150÷150=1cm増やせばよいことになるので間隔もかわります。

エ、オ、カについては
おもりが100gから150gになると量れる重さの最大値は270から420に増えて1.5倍ではないので、おもりを2倍にしても量れる重さの最大値は2倍にはなりません。
おもりの重さを100g増えすと,量れる重さの最大値なのでおもりを一番右につるした場合を考えて右辺が100×(60-15)=4500増えます。
ということは左辺も4500増えるためには分銅を4500÷15=300g増やせばよいので最大値は300g増えます

よってアとカとわかりました。

基礎というわけではありませんが、発展的なタイプの典型問題です。やり方は決まっているのでしっかり勉強していけば点数をとりやすいので合格に近づきます!(畠田)

桜蔭中学校算数 問題解説&入試分析★2020年(R2年)

今回は桜蔭中学校の算数を取り上げます。

【入試資料分析】
受験者数532人
合格者数283人
補欠30人
実質倍率1.88
となっております。
ここ数年、合格者数は多めになっております

【問題分析】
大問1…(1)計算問題です、必ずあわせましょう。(2)軽減税率のコンビニのイートインコンをネタにしたような問題です。ただし内容は簡単な差集算です。(3)今回はこれを扱います。

大問2…(1)計算は基礎的な旅人算ですが問題文の読み取りがわかりにくいので注意です。(2)計算自体は簡単ですが勘違いやミスが多く起こりそうな問題です。(b)の②では上から見た図は一番下の段とその一つ上の段が影響することにも注意です。

大問3…(1)3:4:5を使います。(2)△AMBが底面,LNが高さです。(3)表面積を求めるのにALの長さが難しいですが結局3:4:5です。難しいわけではないですが、解けないと差をつけられてしまうので3:4:5を使いまくるであろうというアプローチに慣れておきたいところです。

大問4…(1)LCMセット法の問題です。分子は3と5のLCM15ごと,分母は4と3と5のLCM60ごとに1セットです。一般的に解けなくても全部書き下す勢いでやる力も必要です。(2)①不定方程式の問題です。サラっと解けるようにしておきたい。②は4で割った余りが影響するのは20gだけなのでまず単純に大きい方から足してみて3ずつ減らして調整しましょう。

(問題)R2 桜蔭中学校・算数 大問1(3)
まっすぐな道に柱を立ててロープを張り、そこにちょうちんをつるします。柱と柱の間は5m50cmで、ちょうちんとちょうちんの間は1m35cmです。1本目の柱から35cm離れたところに1個目のちょうちんをつるしました。ロープはたるまないものとし柱の幅は考えません。柱を10本立てて,ちょうちんをつるしました。
① ちょうちんは全部で[ ウ ]個使いました。また10本目の柱に1番近いちょうちんはその柱から[ エ ]cmのところにつるしました。
② 柱から35cm以内の部分につるしたちょうちんは,とりはずすことにしました。ただし1個目のちょうちんはとりはずしません。このとき,つるされたまま残っているちょうちんは[ オ ]個です。

[解説]
①は簡単に答えます。
{550×(10-1)-35}÷135=36余り55
なのでちょうちんは36+1=37本,10本目に一番近いのは55cmのところです。

②全部書いてしまうぐらいの計算力、処理能力もあっていいんですが、どういう風に考えればいいのかというと135で割った余りに注目します。
550÷135=4余り10
なので、ちょうちん4つごとに柱から10cmずれていきます。

ouin_2020_m1-3_kaisetu1.jpg

最初のちょうちんは最初の柱から35cm進んでいましたが1+4=5つめは2本目の柱より25cm進んでいます。
その次は15cm、その次は5cm
そしてその次は5cm足りなくなり、その次は15cm、その次は25cm、35cm,45cm、最後は55cmとなります。

よって7つのちょうちんがとりはずされるので37-7=30本とわかりました。

桜蔭の問題は処理系の問題も多いですが、全部書きくだす訓練も大切です。その上で余りで考える、LCMセット法で考えるなどやることで合格は近づきます!(畠田)

桜蔭中学校算数 問題解説&入試分析★2018年(H30年)

今回は桜蔭中学を取り上げます。

受験者数521人、合格者数280人、補欠者数30人で倍率は1.9です。
平均点などは非公表ですが、例年では算数は6割5分程度が目安です。

今年の問題は数学的思考が必要なものや,算数としてもヘビーなものが多く難易度が高かったのではないかと思います。

それでは,他の問題でも使うことりそうな処理をする場合の数の問題です。

(問題)平成30年 桜蔭中学校・算数 大問2(2)
同じ大きさの白と黒の正三角形の板がたくさんあります。図のように白い板を24枚すきまなく並べて正六角形を作ります。
次に,24枚のうち何枚かを黒い板と取りかえます。
このとき,正六角形の模様は何通り作れますか。
ただし,回転させて同じになるものは同じ模様とみなします。また,正六角形を裏返すことはしません。
ouin2018m1.jpg
① 24枚のうち1枚を取りかえたとき
② 24枚のうち2枚を取りかえたとき

ouin2018k1.jpg
図の点Oを中心に60度ずつ回転させていって重なる板は同じ色で塗ると軌道は図のように4つになります。


1枚を赤の軌道,青の軌道,緑の軌道,紫の軌道のどこかに塗る4通りになります。


(a)1つの軌道に2枚 と (b)2つの軌道に1枚ずつの場合に分けて考えます。

(a)1つの軌道に2枚
軌道の選び方は4通り
ouin2018k2.jpg
その2枚の間隔が0,1,2の3通り
よって4×3=12通り

(b)2つの軌道に1枚ずつ
軌道の選び方は4つから2つ選ぶ組み合わせで(4C2=)(4×3)/(2×1)=6通り
ouin2018k4.jpg
例えば赤と青なら,図のように赤の1枚を固定して,青はその赤の板に対して6通りです。他の組み合わせも同じでこのように一方の軌道の板を固定して考えると,他方の軌道の板は6通り
よって6×6=36通り

(a),(b)より12+36=48通り
とわかりました。

円順列の1つを固定して考えたり,間隔を考える
回転して重なるものを分類して軌道を考える
などレベルの高い考え方、整理の仕方を使います。
本番は②は難しいかもしれませんが,勉強に良い問題で,桜蔭らしい問題でもあるので解いて勉強してみてください(畠田)

PAGE TOP