数理教育研究会

西大和学園中学校 入試分析 算数 2018(H30)

西大和学園中学校を取り扱います

受験者→合格者(倍率) 合格最低点
男子:1020人→471人(2.17倍) 284点
女子:277人→51人(5.43倍) 326点

女子の合格最低点がかなり高くなっています。

それでは答えはわかるかもしれないけど、その答えが正しいかを考えるのは難しい問題をとりあげます。

(問題)H30 西大和学園中学校 算数 大問4
図1は1辺の長さが1cmの正方形8個の辺をぴったりとくっつけて作った六角形です。この図形を図2のように4つに切りわけて,くっつけ直すと図3のような面積が8㎠の正方形になります。
nisiya2018m1.jpg

(1)図1を3つに切りわけて面積が8㎠の正方形をつくりたいとき,どのように切りわければよいですか。解答用紙の図に線をかきこみなさい。

(2)図4は1辺の長さが1cmの正方形15個の辺をぴったりとくっつけて作った図形です。図5は図4の図形の中に正方形3個をぴったりとくっつけた長方形Xを5個をしきめたものです。このように図4の図形の中に長方形Xをしきつめる方法は,図5の場合をふくめて全部で何通りありますか。
nisiya2018m2.jpg

(3)図6は1辺の長さが1cmの正方形64個の辺をぴったりとくっつけて作った1辺の長さが8cmの正方形です。この問題では1辺の長さが1cmの正方形を「小正方形」,1辺の長さが8cmの正方形を「大正方形」と呼ぶこととします。「大正方形」の中に,「小正方形」3個をぴったりとくっつけた長方形を21個しきつめたとき,しきつめられない「小正方形」が必ず1つあります。それはどの「小正方形」ですか。しきつめられない「小正方形」をすべて黒くぬりつぶしなさい。
nisiya2018m3.jpg

(4)同じ大きさの正方形の頂点を1つの点に集めると図7のようにすきまなく並べることができます。このような正多角形は正方形をふくめて全部で何種類ありますか。
nisiya2018m4.jpg

(1)このような問題は例に注目してみるとヒントになったりします。

nisiya2018k1.jpg
正方形のマスの対角線2つ分が、くっつけ直してできた正方形の辺1つ分になることがわかります。
つまり正方形のマスの対角線4つ分を切るように切ればよいので例えば次のようになります。

nisiya2018k2.jpg

(2)
nisiya2018k31.jpgnisiya2018k32.jpg
図のように①の正方形のマス目に横に長方形を入れて②のマス目に縦に長方形を入れると残りは2通りの入れ方があります。

nisiya2018k33.jpg
②のマス目に横に入れると残りは1通りに決まります。

nisiya2018k34.jpg
①のマス目に縦に長方形を入れると残りは1通りに決まります。

合計4通りです。

(3)答えはわかるかもしれません。
前の問いがヒントになってることが多いので、それを元に考えると

nisiya2018k4.jpg
図のようにすれば真ん中の4×4のところに(2)の入れ方をすればよいので右上の小正方形が空きます。

nisiya2018k5.jpg
そして対称性から回転させて図の4箇所はしきめられない小正方形となりえます。

しかし本当にこれだけなのかはわかりません。

ここからは次の数学的な論法で考えます。
条件を満たすのはどの場合しかありえないか絞る(必要条件により絞る)
→実際にその場合は可能である例を挙げる(十分であることを言う)

まず次のように小正方形を白と青と緑に塗り分けます。

nisiya2018k6.jpg
白は21個,青は22個,緑は21個あります。
青だけ1個多いです。

このように塗り分けると、どのように長方形を1つしきつめても白1個,青1個,緑1個を埋めることになります。
長方形を21個うめると、青だけ1個残ることになります。

つまりしきつめられない場所は青の部分に絞られます。

更に対称性を利用して青の部分の赤い直線について対称な部分を赤に塗ります。

nisiya2018k7.jpg
しきつめられない場所は赤の部分でもなければなりません。
なので青と赤の共通部分の紫の部分に絞られます。

そして紫の部分がしきつめられない例はさきほど書いたように存在しているので紫の小正方形4箇所が答えとなります。

塗り分けは算数オリンピックでも使われているテクニックです。

(4)は簡単に書きます。
これも答えは簡単にわかりますが,それが正しいのか論理的に書いておきます。
すきまなく並べられる正多角形の内角は360°の約数であることから大きい方から360°と180°のぞいて120°,90°,…なので120°以下です。
そして正多角形の内角は正三角形の場合が一番小さく60°以上です。
正三角形は60°,正四角形は90°,正五角形は108°,正六角形は120°でこのうち360°の約数になってるのは60°,90°,120°の3種類とわかります。

試験中にしきつめられない箇所は4箇所しかないことを示すのは難しいとは思うので,まずは前の問いをヒントに答えを書けることが目標です。
余裕があれば何故正しいのか,解法の道具や,考え方も勉強すると答えに漏れがあるかもしれない意識が芽生え点数につながっていくと思います(畠田)

PAGE TOP