甲陽学院中学算数2日目の問題をとりあげたいと思います。
1日目の記事に書いたように平均点は
54.0→56.3→61.4→53.1→47.5→54.3→58.3→40.3→50.4
とほぼ例年通りになりました。
【問題分析】
大問1…(1)は計算問題です。(イ)は(ア)を利用しろ言わんばかりです。(2)は9倍がほとんどの数が桁が大きくなったりなど、絞りやすいのできっちり合わせたいところです。
大問2…ベン図を描いて例えば3つもらった人をAとあらわすと他のところは全てAであらわせます。算数的な解法としては三つ出来るだけ重なった場合や,重ならなかった場合を考えればよいです。難しいわけではありませんが、ごり押しでできるので合わせておきたいところです。
大問3…距離が同じ場合は時間は速さの逆比になるということを使います。追いこしは差の速さを考えたいので,いったんT-U間を距離2倍で考えても良いと思います。T-U間の処理が少し複雑になるだけで旅人算の難易度としては低いので点数をとりましょう。
大問4…1×2×3×…×2020は下から0がいくつありますか?という問題と同じです。5で何回割り切れるかということをやっているという意味を考察しておく必要があります。
大問5…フラフープの問題です。ちょうど今年は灘でもフラフープの問題が出ました。きっちり練習して類題をやった状態に持っていきましょう。
大問6…今回はこれを解説します。
(問題)R2 甲陽学院中学校 算数(第2日) 大問6
底面の半径が3cm,高さが14cmの円柱があります。この円柱の下側の底面の円周上の点Aから,点Aの真上にある上側の底面の円周上の点Bまで,側面に糸をたるまないように巻き付けます。今,点Aから点Bまで,青い糸を上から見て時計回りにちょうど3周,赤い糸を上から見て反時計回りにちょうど4周,それぞれ巻き付けました。
(1)青い糸と赤い糸は何回交わりますか。ただし,2点A,Bは除きます。
(2)2点A,Bを除く,青い糸と赤い糸が交わった点に,高さの低い方から順に①,②,③,…と番号をつけます。そして①と③,②と④,③と⑤,…と,ひとつとばしの番号の点と点を,それぞれ側面上でもっとも短く,たるまないように青い糸で結びます。次に赤い糸をはずします。最後に側面上で青い糸で囲まれた部分に青い色をぬります。このとき色をぬった部分の面積を求めなさい。ただし,円周率は3.14とします。
[解説]
(1)青い糸と赤い糸の交点を次のように読みかえします。
足裏に青いインクをつけたアリと,足裏に赤いインクをつけたアリを考えてインクの跡が糸と考えます。
真上から見ると,青アリと赤アリは同じ地点から同時に青アリは時計回りに3周,赤アリは反時計回りに4周進んで、この2匹のアリが出会った点が交点に対応します。
よって出会った回数は3+4-1=6回
(2)このような糸の問題は展開するのがよくあるアプローチです。
青い糸はABを3等分した点を結んでいけばよいことになりますね。
この上から赤い糸を描いても考察してもいいですが,青アリと赤アリの出会あったから次の出会いまでの時間は一定です。
ということは青い糸と赤い糸の交点は青い糸を6+1=7等分することになります。
青い糸の1周分の長さを[7]とすると交点は図のようになります。
よって緑の平行四辺形と緑の中の紫の斜線部の台形との比は高さは共通なので
(上底)+(下底)の比を考えて
([7]+[7]):(([1]+[3])+([2]+[3]))=14:9
緑の平行四辺形の面積は
(2×3×3.14)×(14÷3)=3.14×28 cm^2
よって紫の面積は緑の中のを2倍して
(3.14×28×9/14)×2=113.04cm^2
この問題は似たような問題で使った解法は使えないか練習していくことで、アプローチが出来るようになっていくと思います。普段から試行をしてみて練習をしましょう。
がんばってください。(畠田)