灘中学校、算数2日目をとりあげます。
【入試資料分析】
今年の算数2日目の特徴は1日目と同じで平均点がここ10年でも一番低いことです。
受験者平均,合格者平均の差はそんなに大きいわけでもありませんでした。
そして大問の数が4から5に増えました。
受験者平均
(H24)71.4,(H25)54.9,(H26)49.7,(H27)52.7,(H28)50.8,(H29)48.4,(H30)54.8,(H31)44.5
合格者平均
(H24)86.2,(H25)70.3,(H26)63.9,(H27)64.6,(H28)61.2,(H29)62.4,(U30)69.2,(H31)56.8
ただし問題の内容としては去年にかなり近く,近年の試験を中心に傾向を分析し対策をすればそれだけ成果が出やすかったと思います。目標は6割。
今年も高校数学の考え方が背景にある問題がほとんどです。
大問1は合同式(mod)
大問2は群数列
大問3は空間図形
大問4は数と式,整数問題
大問5は積分の体積の問題で使う断面を考えて体積を求める
これは高校数学を勉強すればよいという極端な話ではなく,過去問などの算数の問題を通してどのような数学的背景があるか考察,研究しましょう。
そのためには何度か解いてみたり,類題や他の難関校の問題などもたくさん練習するなど対策の仕方はシンプルです。
努力が合格点につながっていきます!
【問題分析】
○大問1
4桁の整数Aは百の位の数字が0です。Aの十の位の数字と一の位の数字を入れ替えて4桁の整数Bを作ります。4018と4081のようにAもBも7の倍数となるようなAは全部で何個ありますか。次のヒントを参考にして答えなさい。ただし,4018と4081の2個も含め,AとBが等しい倍も含めます。
ヒント
4081-4018=63=9×(8-1)
4082-4028=54=9×(8-2)
1000=7×143-1
[解説]
前回の灘1日目の大問4でも解説したように高校数学で並ぶ合同式の考え方を勉強していると安定して解けます。
もはやヒントが合同式の考え方に誘導しています。
合同式は
NとN’をそれぞれPで割った余りが等しいということを
N-N’=(Pの倍数)
で扱ってこれを
N≡N’ (mod P)とあらわします。
これを考えることにより何が便利になるのかというと
N+M≡(NをPで割った余り)+(MをPで割った余り)
N-M≡(NをPで割った余り)-(MをPで割った余り)
N×M≡(NをPで割った余り)×(MをPで割った余り)
のように足し算,引き算,掛け算をしたものの余りを考えるときは,それぞれの整数の余りで足し算,引き算,掛け算をして考えればいいところです。
まず
4081-4018=63=9×(8-1)
4082-4028=54=9×(8-2)
の使い方はAとBは7で割った余りが等しくないといけません。
このことをA-B=(7の倍数)で扱います。
AとBが7で割り切れなければならないのを,まずはAとBを7で割った余りが等しい,つまりA-Bが7の倍数って考え方に至るには合同式の考え方を練習したかどうかが大きく差が出てしまいます。
ヒントから(AとBの差)=9×(下2桁の二つの数の差4)なので,AとBが7で割った余りが等しくなるには下2桁の二つの数の差が0も含めて7の倍数であればよくなり
00,11,22,33,44,55,66,77,88,99,07,18,29
の場合しかないことがわかります。
次に4桁の整数が7の倍数でないといけませんがヒントの
1000=7×143-1
は1000は7で割ると1不足する(余り6になる)数として扱います。
なので千の位をNとすると
N×1000は1×N=N不足する数として扱えばよくなります。
すると4桁の整数
1000×N+(下2桁)
は
(7で割るとN不足)+(下2桁を7で割った余り)
として扱えばよく,これが7で割り切れるようになればよくなります。
つまり
(Nを7で割った余り)=(下2桁を7で割った余り)
となればよくなります。
下2桁は7で割ると
余り0は00,07,70,77の4つ
余り1は22,99,29,92の4つ
余り2は44の1つ
余り3は66の1つ
余り4は11,88,18,81の4つ
余り5は33の1つ
余り6は55の1つ
千の位Nを7で割ると
余り1は1,8の2つ
余り2は2,9の2つ
残りは全部1つです。
4桁の整数の個数は
4×1+4×2+1×2+1×1+4×1+1×1+1×1=21個
とわかりました。
○大問2
1から52までの数が書かれたカードが,左から数が小さい順に次のように並んでいます。
[1] [2] [3] [4] … [51] [41]
これらのカードを次の手順で並べ替えます。
2の倍数が書かれたカードが左にあるものから順にすべて取り出し,取り出した順に左から並べます。その並びの右側に,取り出していないカードを順番を変えずにすべて並べます。このとき次の(A)のような並びになりました。
(A)[2] [4] [6] … [52] [1] [3] [5] … [51]
(A)の状態のカードについて,3の倍数が書かれたカードを左にあるものから順にすべて取り出して同様の手順で並び替えました。そのときの状態を(B)とします。
(B)の状態のカードについて
(1)左から1番目,2番目,3番目にあるカードに書かれた数を答えなさい。
(2)[1]は左から何番目にありますか。
(B)の状態のカードについて,4の倍数が書かれたカードを左にあるものから順にすべて取り出して同様の手順で並べ替え,次に5の倍数が書かれたカードを左にあるものから順にすべて取り出して同様の手順で並び替え,さらに6の倍数が書かれたカードを左にあるものから順にすべて取り出して同様の手順で並び替え,最後に7の倍数が書かれたカードを左にあるものから順にすべて取り出して同様の手順で並び替えました。
(3)左から1番目,2番目,3番目にあるカードに書かれた数を答えなさい。
(4)[31]は左から何番目にありますか。
(5)左から31番目にあるカードに書かれた数を答えなさい。
[解説]
群数列のような問題です。
グループ(群)にわけて考えて
1、まずどのグループに入るか
2、そのグループの中で何番目か
が基本的な方針になります。
(1)まずは具体的にやってみましょう
1,2,3,4,…,52
2の倍数を取り出すと
(A)2,4,6,…,52,1,3,5,…,51
3の倍数を取り出すと
(B)6,12,18,…,3,9,15,…,2,4,8,…,1,5,7,…
となります。
(2)
(B)は
[3の倍数または2の倍数][3の倍数でないかつ2の倍数でない]
とグループ分けできる順番になっていて1は[3の倍数でないかつ2の倍数でない]のグループの一番左です。
[3の倍数または2の倍数]のグループの個数を考えて
52÷6=8余り4,52÷3=17余り1,52÷2=26より
17+26-8=35個
よって35+1=36番目です。
(3)
グループに分類して,どのグループに入っていて,その中で何番目か細かく見ます。
一番左に並ぶものは[7の倍数]のグループなので
7,14,21,28,35,42,49
が並んでいます。
このうち6の倍数の42が一番左にあることになります。
その次に5の倍数の35,その次に4の倍数の28の順番に並んでいることになります。
(4)31は素数なので一番右の
[7,6,5,4,3,2の倍数でない]のグループのところに入ります。
このグループに入る数を書き下すと素因数が7より大きい素数だけで出来た数(11×11=121の時点で52をこえるので結局11以上の素数)と1になります。
1,11,13,17,19,23,29,31,37,41,43,47
この順番のまま並ぶことになるので31は右から5番目
つまり左から52-5+1=48番目とわかります。
(5)左から31番目と言うことは右から52-31+1=22番目です。
右から数えた方が早いかもしれません。
一番右のグループ
[7,6,5,4,3,2の倍数でない]は(4)より12個
それより一つ左にあるグループ
[2の倍数かつ7,6,5,4,3の倍数でない]は
2×1,2×11,2×13,2×17,2×19,2×23の6個
この時点で12+6=18個です。
もう一つ左にあるグループ
[3の倍数かつ7,6,5,4の倍数でない]は
3×1,3×3,3×9,3×11,3×13,3×17
の6個で順番もこのままです。
だからこの二義から22-18=4番目の3×9=27となります。
一応最後の状態を書くと
42,35,28,21,14,7,49 | 30,12,24,36,48,6,18 | 20,40,15,45,10,50,5,25 | 4,8,16,32,44,52 | 3,9,27,33,39,51 | 2,22,26,34,38,46 | 1,11,13,17,19,23,29,31,37,41,43,47
となります。
ただ,この問題の場合は細かく全て順番を知ることでなく,まず大きくグループ分けするという大局的な見方を練習しているか問われてると思います。(畠田)