数理教育研究会

渋谷教育学園幕張中学校 算数 問題 解説&入試分析★2018年(H30年)第1回

今回は渋谷教育学園幕張中学の一次をとりあげます。

2018年度は
受験者、男子1411人、女子593人、計2004人
合格者、男子520人、女子191人、計711人
倍率は2.8となっています。

各教科の平均点は(受験者平均点,合格者平均点)の順で
国語(50.3,59.7)
算数(48.9,59.2)
社会(36.8,42.5)
理科(29.3,38.9)
合格最低点が179/350

相変わらず難易度の高い問題が多いですが、渋幕としては例年程度だったと思います。

難関校に多そうな立体図形の切断の問題をとりあげます。
渋谷教育学園渋谷中学2018年で立方体を切断しましたが、それの直方体版です。

(問題)H29年 渋谷教育学園幕張中学校 第1回 大問5
図のような直方体があり、辺AB上に点Pを、辺BC上に点Qを、PBとQBの長さがどちらも2cmになるようにとります。
また、辺EF上に点Rを、辺FG上に点Sを、RFとSFの長さがどちらも6cmになるようにとります。4つの点P,Q,R,Sを通る平面でこの直方体を切り、点Aを含むほうの立体を(あ)とします。
sibumaku2018m1.jpg

このとき、次の各問いに答えなさい。
ただし、角すいの体積は、(底面積)×(高さ)÷3で求められるものとします。
(1)立体(あ)の体積は何㎤ですか。
(2)立体(あ)を面PRSQが底面になるように平らなゆかの上におきます。このとき、点Dはゆかから何cmの高さにありますか。

(1)
sibumaku2018k1aa.jpg
直方体の体積から図の赤の実線部分の三角すいTPBQの体積を引きます。

小さい三角すいTPBQと大きい三角すいTRFSの相似比は
2:6=1:3
です。
大きい三角すいの高さTF=BF×3/(3-1)=12cmで
体積比は
(大きい三角すい):(赤の実線部分)=3×3×3:(3×3×3-1×1×1)=27:26
より
(赤の実線部分)=(大きい三角錐すい)×26/27=△FRS×TF×1/3×26/27=208/3㎤
よって
(あ)=8×12×10-208/3=2672/3㎤

(2)平面PRSQを底面と考えたときの点Dの高さを求めなさいと言う問題になります。
色々な解法が考えられそうですが,
(1)で考えた小さい三角すいTPQBは1:1:2です。
sibumaku2018k21.jpg
これは赤の三角形の面積が展開図を考えれば求まる有名な三角すいです
sibumaku2018k22.jpg
もちろん体積もわかるので,赤の三角形を底面と考えると,高さもわかります。
赤の三角形は平面PRSQ上にあるので,底面PRSQに対して点Bの高さが求まることになります。
点Dの高さを求めるには,点Bの高さが使えないかを考えてみることにします。

まず点Bの高さを求めていくと
(赤の三角形の面積)=(正方形)-(青の三角形)-(黄の三角形)-(緑の三角形)
=4×4-2×4÷2-2×2÷2-2×4÷2=6㎠
(小さい三角すいの体積)=2×2÷2×4÷3=8/3㎤
よって赤の三角形を底面としたときの高さは8/3×3÷6=4/3cm

ここで一つの方法として点Dと点Bの高さの比を考えてみます。
sibumaku2018k3aa.jpg
図のように平面PRSQで平行な面で等間隔になるようにスライスすると
点Bから平面PRSQまでは1つ,点Dから平面PRSQまでは10つ層があるので
(点Dの高さ):(点Bの高さ)=10:1
であることがわかります。

実際には
sibumaku2018k4.jpg
上面において相似比
(赤と直角二等辺三角形):(青の直角伊藤辺三角形)=AP:UB=10:1
から10:1と計算すればよいです。

よって
4/3×10=40/3cm
とわかりました。

渋幕の立体図形の問題は難しいですが,典型的な解法で解けるには解けます。
色々な学校の立体図形の問題で練習して使えるようにしておきましょう(畠田)

PAGE TOP