数理教育研究会

渋谷教育学園幕張中学校 算数 問題 解説&入試分析★2020年(R2年)第1次

今回は渋谷教育学園幕張中学の一次入試を取り扱います。

【入試資料分析】
例年は合格者を730人前後とるところを、今年は受験者数はかわらないのに合格者数は630人しかとらず厳しいになったと思われます。
男子
受験者数1441人 合格者数464人
女子
受験者数617人 合格者数166人
合計
受験者数2058人 合格者数630人 倍率3.3

各教科の平均点では算数の受験者平均と合格者平均の差が例年では10点程度ですが今年は13.8点とかなりあります。

算数は差がつきやすい試験だったと思われます。
(配点,受験者平均点,合格者平均点)の順で
国語(100,48.8,56.0)
算数(100,45.0,61.3)
社会(75,43.1,47.4)
理科(75,48.9,57.1)
合格最低点は204/350

合格者が少なかった影響もあってか合格者平均や合格最低点が比較的高くなっています。
特に算数は平均点と合格者平均の差が16点と例年に比べてかなり大きくなっています。

【問題分析】
大問1…継子立てです。難関校でかなりよく出てるので,よく練習していれば簡単だったと思います。2の累乗が残るまで取ると後は,取られ方が規則的になります。研究しておきましょう。

大問2…連続する整数の和であらわす問題です、これもかなりよく出る難関校の典型問題です。特に(4)は中学受験の算数らしく項数が奇数か偶数かでわけるより,高校数学っぽく(初項+末項)×(項数)÷2で考えた方がわかりやすかったかもしれません。何故,2の累乗の時だけ作れないのか考えてみてください。

大問3…非常に簡単な水の問題です。簡単すぎて戸惑ったかもしれません。

大問4…今回はこれを扱いたいと思います。

大問5…やはり渋幕なら出てくる切断の問題です。(1)は簡単です。(2)①も慣れていれば比とか考えて特に問題なくすぐに答えられたと思います。②は少し工夫しないといけません。しかし例年より比較的簡単であったように思います。

(問題)R2年 渋谷教育学園幕張中学校 一次入試 大問4
(1)図1のように直角三角形ABCにACを1辺とする正方形とBCを1辺とする正方形をかき、2つの点D,Eを直線で結びます。このとき,三角形CDEの面積は何cm^2ですか。
sibumaku20m1.jpg

(2)図2のように直角三角形ABCと,AD,BD,CDをそれぞれ1辺とする正方形があります。このとき,CDを1辺とする正方形の面積は何cm^2ですか。
sibumakum2.jpg

(3)AB=AD,AD:DC=2:3,角Aの大きさが150°,角Dの大きさが90°である四角形ABCDがあります。辺BCをのばしたところに2つの点E,Fをとります。次に,直角三角形AEGと直角三角形DFHをかいたところ,図3のようになりました。直線ADと直線GHが平行のとき,三角形ABEは三角形DCFの面積の何倍ですか。
sibumaku20m3.jpg

[解説]
(1)
shibumaku_2020_kaisetu1.jpg
この問題では2つの三角形のある角度の和が180°であれば、面積の比はその角をはさむ2辺の長さの積の比であることを使います。
2017年度の灘中学2日目の大問4や,2018年度の甲陽2日目の大問5にも出題されています。
特に図1のように2つの正方形で作られる三角形2つの形に使うことが多いです。

shibumaku_2020_m4-1_kaisetu1.jpg
△ABCと△CDEは∠ACB+∠DCE=180°なので面積の比はAC×BC:DC×ECの比に等しいですが、AD=DC,BC=ECより△CDEの面積は△ABCと等しくなり15°の直角三角形なので面積は大丈夫ですね。
(8×4÷2)÷2=8cm^2
とわかります。

(2)
shibumaku_2020_m4-2_kaisetu1.jpg
(ADを1辺とする正方形の面積)=1×1=1cm^2を☐倍すると(CDを1辺とする正方形の面積)
(CDを1辺とする正方形の面積)を☐倍すると(BDを1辺とする正方形の面積)=3×3=9cm^2なので☐×☐=9からA=3より
(CDを1辺とする正方形の面積)=3cm^2

(3)
shibumaku_2020_m4-3_kaisetu1-2.jpg
∠CDA=∠FDH=90度なので(1)のように考えると△DCF:△DAH=DC×DF:DA×DH=3×■:2×1
((2)から■×■=3)
同じように△ABEでも考えられないかと考えると,∠GAE=90°-60°=30°なので
∠EAB+∠DAH=360°-30°-150°=180°になっています。
だから△ABE:△AGD=AE×AB:AG×AD=2:■

するとAD//GHより△AGD=△DAHにいなるので
△DCF:△DAH=3×■:2=3×■×■:2×■=9:2×■
△ABE:△AGD=2:■=2×2:2×■=4:2×■
よって△ABEは△DCFの4/9倍

この問題もそうですが、今回は全体的に最難関校で出される難易度が高い典型問題ばかりでした。よく練習して考察していればスムーズに解けると思います。成果がわかりやすく出るので,しっかり勉強してください!(畠田)

PAGE TOP