今回は洛南高等学校附属中学校を取り扱います。
【入試資料分析】
倍率も平均点も例年通りで、相変わらず女子の難易度が高いです。
受験者数→合格者数(実質倍率)
男子:536人→219人(2.45倍)
女子:248人→75人(3.3倍)
専願の合格者最低点は男子で236点,女子で268点
併願は男女281点。
合格者平均点は
国語:3科型で96.8 4科型で98.2
算数:3科型で119.2 4科型で110.1
理科:3科型で62.5 4科型で55.0
社会:4科型のみで77.2
総合:3科型で278.4 4科型で274.8
算数はここ数年でもっとも平均点が高くなりました。
合格者平均点は8割程度であり,難しくて解けないと思われる問題や、大して処理が複雑な問題も少なかったのでしっかり高得点を狙ってほしいです。
【問題分析】
大問1…計算問題です。計算力というよりは工夫して計算する問題が多く、思いつきやすいので簡単に満点がとれると思います。
大問2…(1)~(4)まで典型問題が並んでいるのでバシバシ解きましょう、今回はこの(5)を解説します。
大問3…流速の問題です。上りと下りの速さをだしダイアグラムを書くをなど典型的な手法で出来るので満点を狙いましょう。
大問4…(1)(2)は次々とマスが決まっていくのですぐに出せたと思います。(3)は色々なやり方が考えられそうですが、平方数に注目して4の倍数は1直線に並ぶ,9の倍数は1直線に並ぶなど絞っていけます。しかし泥臭く根性で求めるくらいでいいです。
大問5…余りの問題です。すべて余りが一番大きくなる場合は不足が1と考えるなど、やったことあるようなことを聞かれています。いいやり方が思いつかなくても,4,5,6だけで書き下して規則性を見つけるなどして何とか解きましょう。泥臭くごり押しで求められることは重要です。
大問6…切断の問題です。ハイレベルではありますが、工夫しないと解けないというわけでなく典型的な問題なので落ちてついて点数を狙いましょう。
(問題)R2 洛南高等学校附属中学校 算数 大問2 (5)
図の斜線部の面積は[オ]cm^2です。
AB:BC=2:1
[解説]
このような直角三角形や正方形の欠片が見えるような問題は,正方形を合同な直角三角形4つと小さい正方形にわけられた図を考えるとうまくいくことがあります。
三角形ADCをACの中心で180°回転させて三角形CEAを考えると
緑とオレンジと紫の三角形は全て斜線部の直角三角形と合同になります。
そしてAB:BC=2:1とAF:FC=1:2なのでAF:FB:BC=1:1:1となり
EF//DBよりAS:SP=AF:FB=1:1
したがって(斜線部の直角三角形の面積):(正方形RSPQの面積)=2×1÷2:1×1=1:1
なので斜線部の直角三角形の面積は
(正方形ADCE)÷5=5×5÷5=5cm^2
このように要領よく解けなくても、泥臭くやれば解けるのでやってみてください。
泥臭くやることも大切です。
色々やってみることでアプローチの幅が広がり点数が安定してくると思います。(畠田)