数理教育研究会

渋谷教育学園幕張中学校 算数 問題 解説&入試分析★2019年(H31年)第1次

今回は渋谷教育学園幕張中学の一次をとりあげます。

【入試量分析】
倍率はここ数年と同じ程度です。
今年は女子が多いですね。
男子
受験者数1380人 合格者数556人
女子
受験者数632人 合格者数195人
合計
受験者数2012人 合格者数751人 倍率2.7

各教科の平均点では算数の受験者平均と合格者平均の差が例年では10点程度ですが今年は13.8点とかなりあります。

算数は差がつきやすい試験だったと思われます。
(配点,受験者平均点,合格者平均点)の順で
国語(100,46.7,54.7)
算数(100,39.4,53.2)
社会(75,45.7,51.2)
理科(75,42.7,52.2)
合格最低点は188/350

【問題分析】
〇大問1
辞書式に並べる順列の問題は1,2,3,4,…と置き換えておくとわかりやすくなります。
主に高校数学で出される問題ですが,辞書式順列の解法をやってるかどうかでかなりの差がつきそうです。
(1)
Aでは1→[1],4→[2],6→[3],7→[4],9→[5],Bでは2→[1],3→[2],4→[3],8→[4],9→[5]と置き換えます。
[1],[2],[3],[4],[5]から4つ選んで辞書式に並べたときの20番目の数は
20÷(3×2)=3余り2より上2桁は
[1],[2],[3],[4],[5]から4つ選んで辞書式に並べた4番目より[1][5]
残りの桁は[2],[3],[4]から2つ選んで辞書的に並べた2番目で[1][5][2][4]
よってAは1947,Bは2938

(2)
[1]はAは1,Bは2よりBの方が大きい
[2]はAは4,Bは3よりAが大きい
[3]はAは6,Bは4よりAが大きい
[4]はAは7,Bは8よりBが大きい
[5]はAは9,Bは9で同じ。
よってBの方が大きくなるのは
[1]…,4×3×2=24通り
[4]…,24通り
[5][1]… 3×2=6通り
[5][4]…6通り
なので24+24+6+6=60通り

(3)
[1]では2-1=1だけBが大きい
[2]では4-3=1だけAが大きい
[3]では6-4=2だけAが大きい
[4]では8-7=1だけBが大きい
[5]では9-9=0で同じ

上の桁から考えていきます。
[3]が一番差が大きく,2だけBよりAの方が大きいことから
[3][2][5][1],[3][2][5][4]
の2つある。
[3][2][5][1]は2×(4×3×2)+1×(3×2)+2×(2)+1=59番目
[3][2][5][4]は2×(4×3×2)+1×(3×2)+2×(2)+2=60番目

○大問2
見た感じからN進数の問題かなって思いますよね。
1段目は1がいくつあるか
2段目は3がいくつあるか
3段目は9がいくつあるか
4段目は27がいくつあるかの3進法の問題です。
(1)27
(2)1+9×2+27×1=46
(3)2019を3進数であらわすと
2019÷3=673,673÷3=224…1,224÷3=74…2,74÷3=24…2,24÷3=8,8÷3=2…2,
より2202210(3)であるので各桁が三角形の個数より
(2+2+0+2+2+1+0)×1×1×1/2=4.5cm²

○大問3
表にまとめるなど処理、整理に慣れていれば簡単にできます。
しかし駅についてからの待ち時間なので頭がこんがらがって焦ってしまいまそうです。
(1)A君がK駅につくのは2時において15+12=27分
27÷8=3余り3で8-3=5分待ち
A君がM駅につくのは15+14=29分
29÷5=5余り4で5-4=1分待ち
よってM駅の1分間
(2)

午後2時に出てK駅に行くと12÷8=1余り4で待ち時間8-4=4分。
M駅に行くと14÷5=2余り4で待ち時間5-4=1分

午後2時に出てそれぞれの駅についてから何分後に電車が出発するかを表にまとめる
shibumaku_2019_m3_kaisetu1 (2)
待ち時間が同じになるのは36分が共通なので赤の午後2時31分から午後2時36分まで


表の青の部分より3+1+4+2+3+1+4=18分

○大問4
応用度が高めの典型問題です。
(1)は何とかなるかもしれませんが、(2)は思いつかなくても見た感じ90°以外にはないので答えはわかりそうです。
(1)
shibumaku_2019_m4_kaisetu1.jpg

①図より青の補助線を考えると△ABCと△CBFは相似でBV=1/2cm,△ACDと△ACFは合同より
△ACD=△ACF=(2+1/2)×1÷2=5/4cm²

②図よりDC=CFから△CED=△CFE,△CEF:△CAE=BF:AB=1/2:2=1:4より図のように面積の比がおけて
CE:CB=(△ACE+△FCE):△ACF=(③+①+①):③=5:3から
CE=5/3×CB=5/3cm

(2)
shibumaku_2019_m4_kaisetu2.jpg

図のように直角二等辺三角形になるという問題がありますが
△DOAが赤い直角三角形と合同で,△BOAが青い直角三角形と合同で
x+yの半分は45°とわかり90°になります。

それでは大問5をとりあげます。
いかにも渋幕の最後の大問という感じの立体の切断の問題です。

(問題)H31年 渋谷教育学園幕張中学校 第1次 大問5
図のように、すべての面が平らな立体があり、辺ABと辺EFは平行で、辺BCと辺FG、辺CDと辺GH、辺DAと辺HEもそれぞれ平行です。
BC上に点Pを,CPの長さが2cmになるようにとります。また、DA上に点Qを、DQの長さが4cmになるようにとります。
shibumaku_2019_m5.jpg

このとき、次の各問いに答えなさい。
ただし、角すいの体積は、(底面積)×(高さ)÷3でもとめられるものとします。

(1)3つの点C,D,Fを通る平面でこの立体を切るとき、Aを含む立体の体積とAを含まない立体の体積の比を、できるだけ簡単な整数の比で表しなさい。

(2)3つの点P,Q,Fを通る平面でこの立体を切ると、平面は辺AEと点Rで交わりました。
①ARの長さとREの長さの比を,できるだけ簡単な整数の比で表しなさい。
②Aを含む立体の体積とAを含まない立体の体積の比を、できるだけ簡単な整数の比で表しなさい。

色々な解き方があると思いますが、難問は断頭三柱を見出して
(平均の高さ)×(断面の面積)
に持っていくと解ける問題がよくあります。
最初の方に考えてみていい解き方です。

(1)
shibumaku_2019_m5_kaisetu1.jpg
図1のようになるので断頭三角柱二つとみて解いてみます。

shibumaku_2019_m5_kaisetu2.jpg
辺ABに垂直な面で切った時の断面の面積の比は図2のように
(Aを含む方の三角形):(Aを含まない方の三角形)=8:12=2:3より

(AB,EF,DCの平均の高さ)×(Aを含む方の三角形):(EF,GH,CDの平均の高さ)×(Aを含まない方の三角形)
を考えます。
(6+6+9)/3×2:(6+9+9)/3×3=7:12

(2)

shibumaku_2019_m5_kaisetu3.jpg
図3のようにBA,PQ,FRを延長すると1点Sで交わり赤い三角形の相似比を考えるのが一つの方法です。
SA:SB=AQ:BP=4:6=2:3なのでSA:AB=2:(3-2)=2:1
よってSA=2×AB=12cm
AR:ER=SA:FE=12:9=4:3


shibumaku_2019_m5_kaisetu4.jpg
図4のように平面AFGDで切断して断頭三角柱で考える。

shibumaku_2019_m5_kaisetu5.jpg
ADに垂直な面で切った時の断面の面積の比は図5のように
(上の三角形):(下の三角形)=6:9=2:3
となる。
よってFFの記号は長さ0として
(点Aを含む体積):(元の立体の体積)=
((AQ,BP,FFの平均の高さ)×(上の三角形)+(AQ,RR,FFの平均の高さ)×(下の三角形)×4/7):(AD,BC,FGの平均の高さ)×(上の三角形)+(AD,EH,FGの平均の高さ)×(下の三角形)
=((6+4+0)/3×2+(4+0+0)/3×4/7):((8+8+12)/3×2+(12+12+8)/3×3)
=47:266
よって47:(266-47)=47:219(畠田)

PAGE TOP