数理教育研究会

甲陽中学校 算数(1日目) 2021(R3)入試分析

甲陽学院中学算数1日目の問題をとりあげます。

【入試資料分析】
受験者数 389名→363名→350名→349名→317名→382名→369名→402名→393名→383名→380名
合格者数 218名→216名→219名→219名→215名→220名→219名→222名→220名→217名→215
実質倍率 1.78倍→1.68倍→1.60倍→1.59倍→1.47倍→1.74倍→1.68倍→1.81倍→1.79倍→1.76倍→1.77倍
例年程度の倍率となりました

各科目の得点情報は算数1日目は例年程度の易しさ、2日目はここ数年では一番高くなりました。
その影響により算数の合計得点の平均点も高くなっています。

受験者平均
国語① 64.9→49.4→63.1→62.0→56.5→53.6→55.2→56.9→63.3→53.9
国語② 59.9→59.0→69.5→49.3→60.7→59.7→52.8→60.8→64.5→55.1
算数① 56.0→49.8→60.3→62.1→58.3→58.9→62.1→63.8→60.7→61.9
算数② 54.0→56.3→61.4→53.1→47.5→54.3→58.3→40.3→50.4→63.2
理科  54.7→52.1→67.9→53.7→59.8→56.9→47.9→62.8→53.9→52.1
合格者平均
国語 132.0→114.9→138.1→117.7→125.4→119.9→117.1→125.2→133.5→116.2
算数 128.6→122.6→138.3→127.2→119.0→130.5→141.4→122.6→129.0→143.8
理科 58.8→58.1→71.7→57.1→59.8→60.6→53.3→67.6→58.6→56.4

算数の(①の平均点)+(②の平均点)は
110.0→106.1→121.7→115.2→105.8→113.2→120.4→104.1→111.1→125.1
これと合格者平均との差は
18.6→20.5→16.6→12→13.2→17.3→21→18.5→18→18.7

例年程度に差のつく試験であったと言えます。

【問題分析】
大問1…(1)計算問題。2021=43×47ネタはやはり出ていきます。(2)二等辺三角形を利用していく角度の問題で、典型的な問題の少し応用程度です。

大問2…仕事算の典型題。素早く完答したい。

大問3…正射影する問題。今回は(2)を扱います。

大問4…甲陽でよく出題される整数を数える問題。(2)は3種類の数字どの組み合わせも12個というアプローチをとることができると早く解ける。

大問5…平面図形の問題。特別難しいわけではないような難関校レベルでの標準的な図形問題を練習しておけば特に問題はない。

大問6…旅人算。甲陽なので高度な解法が必要と見せかけて、情報を整理すると一つ一つ求まり意外と簡単な方法しか使わない。

それでは大問3(2)にいきましょう。
正射影するところがポイントです。

(問題)R3 甲陽学院中学校 算数(第1日) 大問3(2)
図のような、立方体の各辺の真ん中の点を結んで出来た立体Xがあります。


(2)BN:NE=1:2となるように辺BE上に点Nをとります。点Nを通り、面BCFに平行な平面で立体Xを切断するとき、立体Xの断面積は面BCFの面積の何倍ですか。

 

[解説]
これは面BCFを含む平面に正射影して考える定番の方法があります。
面BCFに垂直な方向で見るわけです。

正八面体である面に垂直に見ると正六角形になるという解法がありますが、同じように考えてくれたらよいです。

すると面BCFに垂直な方向で見ると立方体であった部分は図の破線部の正六角形になります。

そして青で囲まれた部分が立体Xの断面になります。

この面BCFに垂直な方向で見た図における2つの赤い三角形は合同になっているので
BC=③
とすると
AE=③
であり
BN:BE=1:(1+2)=1:3よりMN=①となります。


ということは断面は図のように1辺の長さ⑤の正三角形から1辺の長さ①の正三角形を三つ取り除けばよいので
(5×5-1×1×3)÷(3×3)=22/9倍とわかりました

解法が思いつかなさそうな難しい問題などは特にはありませんでしたが思ってたほど平均点は高くなりませんでした。しっかり対策して普通の問題をばっちり解けるようにすればそれだけ報われて合格者平均をこえることができる試験であったと思います!がんばってください!(畠田)

PAGE TOP